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It is assumed that the electric charge of pointlike objects carries a nonlocality 
defined by a fundamental length and has a distribution over space. From physical 
requirements a unique form of charge distribution is found that in turn gives rise 
to a change in the Coulomb law at short distances and leads to a modification of 
the photon propagator. A nonlocal gauge transformation connected with extended 
charge is presented, which allows us to construct gauge-invariant nonlocal 
quantum electrodynamics free of ultraviolet divergences. 

1. ~ T R O D U C T I O N  

The physical and space-time (or geometric) understanding of the origin 
of electric charge is an unsolved problem of modern physics. There are two 
approaches one can take concerning the fundamental nature of electric charge. 
First, from the physical point of view, the need with regard to extended, 
fundamental objects, as opposed to pointlike constituents, for an explanation 
of nonlocality (Aspect and Grangier, 1986; Penrose, 1989) in quantum 
mechanics and for the construction of a unified field theory (Green et  al., 
1986; Polyakov, 1987) of all interactions including gravitation allows us to 
connect an electric charge (distribution) with a fundamental length (Namrai, 
1986) (the size of extended objects) and to understand it as a topological 
defect (mode) on the string world-sheet [see Nanopoulos (1994) for discus- 
sion]. Second, on a deeper level, where the quantum fluctuations in the 
geometry of space are so great at small distances that even the topology 
fluctuates, forms "wormholes," and traps lines of force, as supposed by 
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Wheeler (Misner et aL, 1973), the electric and nuclear charges give evidence 
for the presence of a submicroscale structure of space-time resembling a 
foamlike structure which is on the whole homogeneous. Thus, it seems, the 
fluctuations in the geometry make topological defects (or a multiply connected 
topology) which provide a natural description for the electric charge as electric 
lines of force trapped in the topology of a multiply connected space. 

Our approach belongs to the first direction and is modest; we attempt 
to find a unique form of the electric charge distribution associated with 
the universal fundamental length and to construct nonlocal gauge-invariant 
quantum electrodynamics. In the given scheme, the Coulomb law is changed 
at short distances and the photon propagator turns out to be modified; the 
theory becomes nonlocal and finite on both the classical and quantum levels. 
The concrete aspect of our scheme is still in a somewhat primitive state by 
comparison with the sophistication of conventional "point" field theory. 

In Section 2 we start with Poisson's equation for a pointlike charge as 
a basis for the construction of the local quantum field theory in which 
ultraviolet divergences are presented. In Section 3 we introduce the fundamen- 
tal length into physics via a charge distribution over space, and infinitely 
sharp delta functions, involved in the definition of the pointlike charge distri- 
bution, are smeared out over the extension of fundamental objects. Poisson's 
equation for extended charge is obtained and a unique form of the charge 
density is found. The Coulomb law and the photon propagator are modified 
in consistency with the local theory of pointlike elementary constituents. 
Further, in order to construct nonlocal quantum electrodynamics (QED), we 
introduce in Section 4 a nonlocal gauge transformation induced by an extended 
electric charge distribution. The Efimov (1977) nonlocal S-matrix for QED 
is obtained in Section 5. Sections 6 and 7 deal with the regularization proce- 
dure and the gauge invariance for the S-matrix. Finally, in Sections 8 and 9, 
we study the simplest primitive Feynman diagrams and obtain a restriction 
on the value of the fundamental length in nonlocal QED. In the Appendix 
we give some mathematical computations. 

2. A POINTLIKE CHARGE AND THE COULOMB LAW 

Let us consider the pointlike charge e with the distribution p(r) = 8(r) 
in space. Here B(r) is the Dirac B-function. Then the Poisson equation for 
its potential is 

A~c = -ep( r )  (2.1) 

the solution of which is the Coulomb Law 
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e I d r ' p ( r - r ' ) -  e [ d r ' ~ ( r - r ' ) -  e 1 (2 .2 )  

~(r) = ~ I r '  I 4rr I r ' t  4"rr r 

It is well known that equation (2.1) and potential (2.2) are a part of  
classical and quantum theories of  the electromagnetic "point" interaction. In 
both there exist divergences; for example, the self-energy of the pointlike 
classical charge 

e I I f  w = -~ d3r p(r)q~c(r) = ~ d3r (grad q~c(r)) 2 

f e2[o~dr = ! d3r E z = - -  - -  (2.3) 
2 4xr r 2 

goes to infinity and in QED the local Green function of  the photon 

A~(x) = - g ~ A ( x )  (2.4) 

where 

A(x) _ (2'rr) 4 i l  f d4p eipxA(p 2) (2.5) 

and z~(p z) = ( -p2  _ i¢)-l, p2 = p~ _ p2, has a singularity at the point x = 
0. In the Euclidean metric the expression (2.4) takes the form 

_ 1 1 
AE(X ) 4'rr 2 ~ ;  ~ = x4 z + x 2 = - x  2, x z = ~ - x z (2.6) 

It should be noted that in the static limit, the Fourier transform of (2.5) is 
related to the Coulomb potential (2.2) by 

_ e 1 _ e f d 3 p e i p r l  
q~c 4~r r (2703 p2 (2.7) 

o r  

1 _ 1 ( d3 r e_iprq~c(r ) (2.8) 
p2 e J 

The latter should be understood as an improper integral (see the Appen- 
dix). As is seen above, the relationships (2.6) and (2.7) mean that the concept 
of  a pointlike charge [its singular potential (2.2)] gives rise to the appearance 
of  singularities in the local quantum field theory and vice versa. 
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3. A CHARGE DISTRIBUTION AND THE FUNDAMENTAL 
LENGTH 

Recently, a majority of physicists have come to believe that in nature 
there exists a new fundamental constant of the dimension of length, alongside 
such constants as the velocity of light c and the Planck constant h. This new 
universal constant should lead to a change in our concepts of the physical 
world, and, in particular, the concepts of space-time and locality (causality). 
Introducing such a constant into physics is needed for the understanding of the 
nonlocal nature of quantum physics (Namsrai, 1986) and for the description of 
extended, fundamental objects such as strings or superstrings (Green et  al., 
1986) as a basis for unified theories of all interactions. Here we attempt to 
define this fundamental length by using physical characteristics of the electric 
charge. It may be that the very existence of a fundamental length is caused 
by an electric charge distribution over space. To realize this idea, we should 
smear out the infinitely sharp delta function involved in the definition of the 
idealized concept of a pointlike charge, by the following change 

eS(r) ==~ epl(r) (3.1) 

where a first consistent scheme is 

lim pt(r) = 8(r) (3.2) 
1---~0 

Here the distribution pl(r) describes the extended electric charge due to 
the existence of the fundamental length. We assume that the charge distribu- 
tion p/(r) has a universal characteristic and is independent of the concrete 
properties of elementary constituents (say, electrons, quarks, etc.) which carry 
the electric charge. 

The change (3.1) leads to the "nonlocal" Poisson equation 

A~pt(r) = -ept(r)  (3.3) 

and its solution is 

e I dr' p t ( r  - r ' )  (3.4) 
,~(r) = ~ I r ' l  

This is a modified form of the Coulomb law at short distances. It is 
obvious that in accordance with the correspondence principle, the self-energy 
(2.3) and nonlocal photon propagator (2.4) are finite for p/(r). The nonlocal 
Coulomb potential is related to a nonlocal photon propagator by 

- e  I qo/(r) (2,rr) 3 d3p eiprD(p 2) (3.5) 

and 
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D/(p2) = _1 f d3 r e_iprq~l(r ) (3.6) 
e J 

in the static limit. 
Now we attempt to find a unique form for the distribution pl(r). For 

this purpose, we consider the Green function of the photon field: 

, f O~.v(x) - (2~)  4 ggv d4p ei~XDt(p 2) (3.7) 

where its Fourier transform Dt(p 2) in the static limit is given by formula (3.6): 

~ f  e f p t ( r - r ' )  (3.8) Dt(p 2) = d3r e -ipr-~ dr' I r ' l  

in accordance with (3.4). Here 

pt(r - r ' )  - 

and 

i f  (2,rr) 3 d3q e-iqtr-r'~Ol(q) (3.9) 

1 _ _  1 I eipr, 1__ 
I r ' l  2,rr 2 d3p p2 (3.10) 

where Pt(q) is the Fourier transform of the charge density pl(r). It is easy to 
calculate that 

1 1 
DI(P 2) = - -~ ~t(P) (3.11) 

e p -  

On the other hand, propagator (3.7) is defined by using some nonlocal 
photon field A~(x): 

D~(x - y) = (01T{At~(x)A~(y)} 10) (3.12) 

where the generalized field A~(x) should be determined from the interac- 
tion vertex: 

/~n(x) = eA~(x)-~(x)~l~O(x) ~ Op(x)A'~(x)-~(x)'Y~t~(x) (3.13) 

A modified form of the interaction vertex between electromagnetic and 
charged fields arises due to the charge distribution pt(x) and also (at the same 
time) a modification of  the Coulomb law, which gives rise to a change of 
electromagnetic field 

A~(x) ~ A'~(x) ~ pl(x)A~(x) 
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The factorization form (3.11) allows us to introduce the smeared-out 
electromagnetic field A~(x): 

= pt2(x) ® A~(x) = f d4y p~(x - Ate(x) y)A¢(y) 

and the generalized form of the interaction vertex 

/i,(x) = a~(x)j~(x) (3.14) 

(their strict deduction will be given below), where 

Ate(x) = I d 'y  p~(x - y)a~(y) (3.15) 

and j~(x) = e~(x)~l~+(x) is the local current of the fermion field ~(x). The 
quantity p(x) in (3.12) and (3.14) is the generalized form of the charge 
density in the four-dimensional case. Generally speaking, pt(x) is a generalized 
function in the Minkowski space. In the Euclidean metric, p(xE) possesses a 
probability measure satisfying the condition 

f d4XE p2(XE) ---- 1 (3.16) 

With the choice (3.15), the photon propagator (3.12) turns out to be 

i I [pt2(p)]Z D~(x  - y) - (2~r)4 g¢~ d4p eiptx-Y) _p2 _ i~ (3.17) 

where pZ = p2 _ pZ and 15~(p) is the Fourier transform of the generalized 
charge density pt2(x). 

Thus, the expected charge distribution pt(r) should obey conditions 
(3.2)-(3.6) and the equality 

Pt(P) = [Pt2(P, P0)] 21P0=0 (3.18) 

i.e., in the static limit. 

Theorem 1. The nonlocai charge distribution of the Gaussian form 

1 - T  
p/(r) - -  ,rr3/213 e x p  (3.19) 

and its Euclidean extension 

4 [  ] 
p](XE) = ~-fi exp (x 2 + x]4) (3.20) 

satisfy all the above conditions. 
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The proof is verified by direct calculations. 
1. First of all, expressions (3.19) and (3.20) satisfy the normalization 

conditions 

f 

and 

d3r pt(r) - ,rr3/213 dr r2e -r2112 

4 1 -- (11"/2) 1/2= 1 
"rrl/2l 3 212(I//2)] 

4 ,if2 fl  ~ lle-(2u/12) J d4XE p2(XE) ---- ~ ' ~  du 

4 1 
- - -  F ( 2 )  = 1 

14 (2/12) 2 

2. Their Fourier transforms are 

= ~ d3r e-iprpl(p ) ~,(p) 
J 

_ 1 4at dr r sin(pr)e -r2n2 
~3/213 p 

_ 4 Pff~ exp - = exp - 
~ pl 3 4(l//3) 

P/2(pE) = I dnxE e-ipEXEp2(XE) 

4 4"tr 2 fo ° 
"/1"2l 4 p 

dr. x2Ji ( px)e - zd-n2 

_ 16 p exp = 
pl 4 (4//2) 2 4(~-/2 ) 

or in the pseudo-Euclidean metric p2 = --P~E 

p2/2 

From this, it is easily seen that 

p2(x ) - - ( 2 1 ) 4  f d4P e-ipxo2(p) 

exp t - - -~ -  ) 

p2 = p~ __ p2 

= exp(+  --~-) g(4)(x) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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where 

02 02 
i-"] = - -  

ax 2 ax~ 

Thus, the extended form of the charge distribution (3.24) in the Minkow- 
ski space is just the generalized distribution investigated in Efimov (1977, 
1985). From the explicit formulas (3.21) and (3.23) one can see that the 
equality (3.18) holds automatically. 

3. The pointlike charge and its local theory are obtained as a consequence 
of (3.2) with distribution (3.19), where 

lim 1 - - ~  i~0 ~ exp = g(r) 

4. The modified Coulomb law (3.4) with (3.19) is 

~pKr) = (e14~r)~(rle) (3.25) 

where ~(x) is the probability integral 

2-f0  r~(x) = ~ dt e -'2 

5. By direct calculations (see the Appendix) it is easy to show that the 
Poisson equation (3.3) with (3.19) and (3.25) is valid identically. 

6. Direct and inverse Fourier transforms (3.5) and (3.6) with the charge 
density (3.19) give the relationship between the propagator of the photon 
(3.11) in the static limit and the changed Coulomb law (3.25). 

7. In our scheme, the self-energy of  the extended charge is finite, 

e (  a 1 _ e 2 
Wl = ~ J d3r pt(r)qot(r) - l (2"rr) 1/2' ot 4'rr 

and the photon propagator D~(x)  = - g ~ D ( x ) ,  

D(x) _ (2'rr) 4 i l  I dap eipXff)(P2) 

has no singularities at the point x = 0, 

1 ( °  u e-"t2/._._.~ 4 
D(0) - (270 4 2~2 J0 du 2 u 

1 d u e  -ut214 - 1 1 
16,rr2 41t. 2/2 
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Thus, we have obtained all the formulas necessary to construct nonlocal 
gauge-invariant quantum electrodynamics. 

4. A N O N L O C A L  G A U G E  T R A N S F O R M A T I O N  A N D  THE 
NONLOCAL ELECTROMAGNETIC INTERACTION 

It is well known that interaction of charged fields ~(x) with the electro- 
magnetic field A~(x) is defined by the requirement of gauge invariance. This 
means that the physical content of the description of the electromagnetic 
field by using potentials A~.(x) does not change under the gauge transformation 

A~(x)--~ A~(x) + Oj (x )  (4.1) 

since the electromagnetic tensor of the field 

F~,,(x) = O~A~(x) - O,A~(x) 

is invariant under the gauge transformation (4.1). It is usually assumed that 
the interaction of charged fields q~/(x) with the electromagnetic field A~(x) 
is invariant with respect to the group of the gauge transformations: 

a, (x)  ---> a~(x) + O~f(x) 

tpj(x) -~ q~j(x) exp{ iqj(x)  } (4.2) 

tp* (x) --) q~j* (x) exp { - iqjf(x) } 

with an arbitrary function f(x). Here qi is the charge of the fields tpi(x). 
Invariance of the total Lagrangian L(q~j, ~j*, A~) with respect to the gauge 
group (4.2) leads to charge conservation: 

o i l ( x )  = 0 

where 

{ j~.(x) = i ~j q: Bi';~tpj*(x)) ¢pj*(x) 

(4.3) 

~(O¢q~j(x)) q~j(x) (4.4) 

It should be noted that the gauge transformation (4.2) means locality of 
the interaction of the electromagnetic field with the charged fields. A unique 
electromagnetic characteristic of the field q~j(x) is its charge qj, which enters 
into the transformation (4.2). The explicit form of the interaction Lagrangian 
of the electromagnetic field with charged fields is defined by using the 
principle of minimality, which asserts that one gets the change 

Op3pj(x) ~ { 0~ -- iqjA~(x)}tpj(x) 

O~q~7(x) ~ {0~ + iqja~(x)}q~*(x) (4.5) 

under the action of the operator 0~, on the fields ~j(x) and q~j*(x). 
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This is a generally accepted procedure which leads to the difficulties 
encountered in the local quantum field theory. 

In order to generalize the theory in the case of a nonlocal electromagnetic 
interaction due to an extended electrical charge distribution we consider, first, 
the stationary picture when fields q0i(x) do not depend on the time variable. 
Then, instead of the gauge group transformation (4.2), the following nonlocal 
transformations are assumed: 

A0(x) =~ A0(x) 

A(x) =~ A(x) + 0f(x) 

¢pj(x)~tpj(x)exp{iqjfdyp2(x-Y)f(Y)} 
~7(x)~,p?(x)exp{-iqjf dy p](x - y)f(y)} (4.6) 

where pt(x) is the charge distribution defined in (3.19). In this case, the 
current vector (4.4) takes the form 

Jr(x) = ~ I dy ptZ(x - Y)Ji(Y) 
3 

(4.7) 

Here 

jj(x) = ~qj ~(O~o?(x)) ~?(x) ~(O,~j(x)) vj(x) 

is the local current, and therefore the electromagnetic interaction of the type 
of A(x)Jt(x) means that the vector potential A(x) is associated with the local 
current ji(x) of the j th charged particle through some spatial form factor 
p](x - y); that is just the charge distribution with the fundamental length l. 

For the general case, when fields ¢pj(x) and A~,(x) depend on the space- 
time variables x ~ = x °, x, it is natural to use the following nonlocal gauge 
transformations: 

A.(x) ~ A~(x) + Oj(x) 

¢Pj(x) ~ tPj(x) exp{iqj l day p2(x - Y)f(Y) } 

¢p?(x) ~ tp*(x) exp{-iqi f d4y p~(x - y)f(y)} (4.8) 
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where ptZ(x) is the generalized charge distribution (3.24). These transforma- 
tions entail the conservation of an extended electric current: 

f )~ p.~aj. 8(a~q~j(y))SL } J~(x) = i ~. qj dy p2(x - y ]~(a -~,(y)) go~(y) goj(y) 
J 

The local variant is obtained in the limit l --) 0 or p~(x - y) It-,o = 
~(x -- y). 

In the nonlocal case, the usual procedure of the change (4.5) takes 
the form 

O~,cPj(x)~{O~-iqj;dypZ(x-y)Av.(Y)}q~j(x) 

O~tp*(x)~(O~+iqifdyp~(x-y)A~,(y)}q~(x ) (4.9) 

We now tum to the construction of the nonlocal QED with the fundamen- 
tal universal charge density (3,19) and the smeared-out photon field (3.15). 

5. THE EFIMOV NONLOCAL S-MATRIX FOR NONLOCAL QED 

As seen above, in the case of the interaction between electromagnetic 
and Dirac electron-positron fields, the total Lagrangian of classic fields has 
the form 

where 

Here 

L(x) = L°(x) + L°(x) + Li.(x) 

1 L°(x) = -20~A~(x) OvAl(x) 

L°(x) = -~(x)(ib - m)t~(x), 
L~,(x) = e-~(x)A~(x)t~(x) 

A~(x) I dyp~(x - y)A¢(y) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

e is the electron charge and pt(x) is its distribution. 
The Lagrangian of the free electromagnetic field L°a(x) is written in a 

form in accordance with the Lorentz condition a~A~(x) = 0. 
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For QED the gauge group (4.8) acquires the form 

A~.(x) ~ A~(x) + Oft(x) 

t ~ ( x ) ~ ( x ) e x p { i e f d y p ] ( x - y ) f ( y )  } (5.6) 

~(x )~ -~ (x )exp{ - i e f  dyp2(x-y) f (y )}  

Formally, the S-matrix can be written in the form of T-products (Efimov, 
1977, 1985), 

S= T~Aexp{ie f dx-~(x),~'(x)t~(x)} (5.7) 

where the symbol T~ is the so-called Wick T-product or T*-operation (e.g., 
Bogolubov and Shirkov, 1980) and the upper and lower indexes 8, A corre- 
spond to intermediate regularization procedures (defined below) which make 
finite all the matrix elements of the perturbation theory; 8, A are parameters 
of the regularization, and the limits A ~ ~ and 8 ~ 0 mean a removal of 
the regularizations. 

In order to construct the perturbation series for the S-matrix (5.7) by 
prescription of the usual local theory, it is necessary to change (in the Feyn- 
man diagrams) 

A~,,(x - y) ~ Do.,,(x - y) = g ~ ( x  - y) 

= (Of T[A~(x)At~(y)]lO) 

= f dyl f dy2p~(x-yl)p~(y-y2) 

x (01T{A~(yOA~(y2)} I0) 

1 I [0~(P2/%]2 e-iP~-" 
= - g ~  (2,rr)4i dp _p2 _ ie (5.8) 

and to keep the usual local fermion propagator 

S(x - y) = (01T{kb(x)-~(y)}lO} 

_ 1 I 1 e_ip(x_y ) 
(2,rr)4i dp m - p - it (5.9) 

The calculation of the matrix elements for the charged lepton loops will 
be undertaken using the following regularization procedure. 
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6. AN INTERMEDIATE REGULARIZATION PROCEDURE 

The construction of the perturbation series for the S-matrix is possible 
only within the framework of a regularization procedure. In nonlocal quantum 
electrodynamics it is sufficient to regularize the nonlocal photon propagator 
and closed fermion loops. Thus, for the regularized photon propagator in 
momentum space one gets [see Efimov (1977, 1985) for details] 

/2 I_ ~-i= = d~ v(~) e~2[lZ(_k 2 _ ie)]~_ l /3~(k 2) ~ ~+ ;=  ~ (6.1) 

where we have used the Mellin representation 

V(-pZl 2) = ex  = 

1 
v ( x )  - F(1 + ~) 

1 d~ v(~) 
~+,~ ~ t~t-P~]~ 

- - 2  -2~, 0 < ~ < 1  

(6.2) 

for the Fourier transform of the charge density [p2(x)]2. 
For regularization of fermion propagators we will use the so-called 

Pauli-Villars gauge-invariant procedure. This means that causal fermion 
propagators are regularized not separately, but in closed spinor loops: 

c i Sp["ySMj(xl - Xz)~ISMj(x2 -- x3) . . . ]  (6.3) 
J 

where the coefficients c i satisfy the following conditions (Efimov, 1977, 
1985): 

c~ + c 2  +c3  = - 1  

ctA~ + c2A2 + c3A3 = - 1  (6A) 

c l l n A l  + c 2 1 n A 2 + c 3 1 n A 3 = d  

M] = mZAj and  Aj  (.j -- l ,  2, 3) a re  large dimensionless parameters (Aj = 
A + e./, A >> 1; 0 < ej << 1), and d is some finite number which must be 
chosen from the normalization condition of the physical charge of the electron. 

Thus, the regularization introduced here makes it possible to pass to the 
Euclidean metric in any diagram of the perturbation theory. 

We recall that the unique form factor (6.2) decreases only in the Euclidean 
direction, i.e., when p2 ~ _~ .  Therefore we shall investigate the Feynman 
diagrams in the Euclidean momentum space. At the end of the calculations 
it is necessary to remove this intermediate regularization, i.e., to pass to the 
limit ~ ~ 0. 

Moreover, spinor loops are finite in the limit A ~ ~ in accordance with 
the conditions (6.4). 
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Finally, it should be noted that the limit 

S = lim lira S~. (6.5) 
8 ~ 0  { Aj'-=~} 

exists and is obtained in such a way that the S-matrix is unitary and satisfies 
a macrocausality condition investigated by Efimov (1977, 1985). 

In nonlocal quantum electrodynamics the interaction Lagrangian has 
formally the same form as in the local theory: 

Li,(x) = e :-~(x),~t(x)~(x): + e ( Z t -  1):~(x),~t(x)+(x): - ~m :~(x)~(x): 

+ (Z2 - 1):~(x)(ib - m)~(x): - (Z3 - l)¼:F¢,,(x)Fp.,,(x): (6.6) 

where the renormalized constants ZI, Z2, Z3, and ~m are finite and Zt = Z2 
in accordance with the Ward identity. 

7. GAUGE INVARIANCE OF THE NONLOCAL S-MATRIX 

A requirement of gauge invariance for the nonlocal S-matrix, i.e., invari- 
ance with respect to the transformation 

A~(x)  ~ A~(x)  + O j ( x )  (7.1) 

with an arbitrary function f(x), can be written in the form 

O/Oxl~ I "'" O/ax,w.,,(~'~S/~A~l(xt) "'" ~A~,,(x,,)) = 0 (7.2) 

where fermion operators of the electron field satisfy the free motion equation. 
For the proof of (7.2) it is sufficient to consider the case n = 1, i.e., 

8S 
Ov~ ~A~(x~ - 0 (7.3) 

Let us carry out a formal proof in terms of the representation 

S = T e x p { i l d x L , n ( x ) )  (7.4) 

Suppose that the representation (7.4) ensures the construction of the 
perturbation series with the causal functions (5.8) and the S-matrix is decom- 



Universal Charge Distribution and Nonlocal QED 769 

posed into series of normal products of field operators satisfying free motion 
equations. Thus, making use of (7.4), one gets 

8S _ iTS (  ~_._~IdyLin(y))S} 
~A~(x) [\~A~(x) 

dr' p2(x - x ' ) T { ( ~  I dy Lin(Y))S } if 
=/I dr' p2(x - x')T{ e-~(x')~.O(x')S} (7.5) 

Further, we take into account the following equalities: 

= ~(x)S + I dy S(x - y)T{ie.,~t(y)t~(y)S} T{~(x)S} 

i0 {~(x)S} : T{ [md~(x) - ieAt(x)d~(x)]S} 
ia~{-~(x)~l~S} = T{[-m-~(x) + ie-~(x),~t(x)]S} (7.6) 

These relations are valid if the perturbation theory is constructed in 
accordance with the Wick theorem with chronological pairing of the fermion 
operators (5.9), and the S-matrix depends on field operators satisfying free 
motion equations. 

In terms of relations (7.6) one gets 

as _ [ ± as 
a~ aA~(x) . ,  dy p2(x - y) ay~ aAt(y - ~  ) 

= [ d y p 2 ( x - y )  

× T{[m(-~(y)t~(y)) - ie'~(y)At(x)~(y) 
- m(-~(y)O(y)) + ie-~(y),4t(x)~(y)]S} = 0 (7.7) 

So, the S-matrix is gauge invariant within the given formal consideration. 

8. THE CALCULATION OF THE PRIMITIVE FEYNMAN 
D I A G R A M S  

Let us calculate the matrix elements for the S-matrix corresponding 
to the primitive diagrams (Fig. l) which are divergent in the usual local 
quantum electrodynamics. 
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8.1. The Diagram of Self-Energy 

Here the corresponding term in the S-matr ix  can be writ ten in the fo rm 
(see Fig. la) 

- i  :-~(x)~q(x - y)~(y) :  (8.1) 

where  

Et(x - y) = -ie2"y~S(x - y)"y¢D(x - y) 

Passing to the m o m e n t u m  representat ion and mak ing  use o f  our  regular-  
ization procedure  ~ which  al lows us to go to the Eucl idean metr ic  by using 
ko ~ exp(i'rr/2)k4, we get in the limit 8 ~ 0 

~l(P)  = l i m ( - i e 2 )  f dx eiPx~¢S(x)~l~D~(x) 
~-~o ) 

- e2 I v(k~/~)~kE~ m - - P E + k E  
(2.11.) 4 - dkE T m2 + (PE - -  kE) 2 

(8.2) 

Here PE = (--ipo, p),  .ytE) = (--i~/o, "7), and kE = (k4, k), so that 

pEkE = pnk4 + p k  = - ipok4 + p k  

fiE = (PE'Y (v)) = P4"Y4 q- 1 ~  = --Po'Yo + P'Y 

= -(p,¥) = -~ 

kE = k4"~4 -~- kV = -i'Yok4 + k"/ (8.3) 

~#(y.E)'~(vE) -[- "~(vE)'y~ E) = --28~v (811 = 822 : ~33 : 844 = 1) 

~E)fE'y~E) = -- 2rE, f ~  = _ p ~  = p2 

Fil ,  1. The primitive Peynm~ diagrams in nonlocal QED. 
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Taking into account the Mellin representation (6.2) for the form factor 
V(k~l z) and after some calculations we have 

e 2 1 f-,~-i= d~ v(~)(m212) ~ 
~t(P) - 8"rr 2i J_~+io~ (sin 'rr~)2F(l + 6) F(~, p) (8.4) 

where 

F(t~, p) - F(1 " ~) du 1 - - ~  u (2m - pu) (8.5) 

is regular function in the half-plane Re ~ > - 1. Assuming the value m2l z to 
be small, one can obtain the following expression for the self-energy: 

~l(P) = ~ du (2m - u/~) In 1 - ~-~ u 16.rr2 

x [ ( 3 1 n ~ l  + 3 v ' ( 0 ) + 3 ~ (  1 ) +  l ) r a 2 / 2  

+ 4m2/2v(l) In m212 v(1) 12 m-2 

e 2 [ (  1 ) p 2 ]  
16.rr2(m-~O) l n ~ 7 ~ - v ' ( O )  + 1 - m212v(1)~m 2 

+ 0((m212) 2) (8.6) 

Let us calculate the correction to the electron mass, 

3 
Bm = m 0 - m = - ~ ( m )  = ~ ~{X + O(l)}m (8.7) 

where X = ln[1/(m2l~-)]. 
As is seen above, the expression for ~(p)  is consistent with the usual 

result in local quantum electrodynamics. 

8.2. The Vacuum Polarization Diagram 

The term of the scattering matrix corresponding to this diagram (Fig. 
lb) has the form 

- i  :A~(x)II~,~(x - y)A~(y): (8.8) 

where 

I I~(x  - y) = - ie2Sp { ~&S(x - y ) ~ S ( y  - x) } (8.9) 
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Let us use the proposed method of the regularization (6.3) and obtain 
in momentum space 

i f  reg I I~(x  - y) - (2"rr) 4 dp e -ip(x-y) reg I ]~(p)  (8.10) 

Here 

reg H~v(p) (2~)4i dk j=o ~ ciSp 3~ Mj - k - ie 

[ = (p~p~ _ g ~ p 2 )  2"rr 2 dx x(l - x) 

{( :) ( :)} x in 1 -x (1  - x ) ~  + ~ c ~ l n  A ~ - x ( l  - x ) ~  
j=l 

In virtue of the condition (6.4) one obtains in the limit A ~ ~ 

I)~dp) = lim lim reg l ]~ (p )  = ( g ~ p 2  _ p~p~)f i(p2) 
A--~oo ~j---~O 

e 2 
l l ( p  2) = l=[r(p 2) -t- ~ d 

where 

and 

, } 
Y" M: .... (/~ - p) - ie 

(8.11) 

(8.12) 

l=lr(p2) _ _  p2 dP 2 2"In" 
- p 2  1 -  + 12.rr2 r~ 2 p2(p2 -- ie) p2 } ~ p 2 J 

(8.13) 

Thus, within the framework of  our regularization procedure the polariza- 
tion operator I'I(p 2) is finite upon the removal of the regularization and 
coincides with the renormalized expression in the usual local electrodynamics 
if we choose d = 0 for an arbitrary constant of the regularization. In this 
case I](p 2) is normalized by the condition 

II(0) = fir(0) = 0 

This means that the constant d should define the renormalized electron 
charge and the choice d = 0 corresponds to the fact that, at least in second 
order of perturbation theory, the charge renormalization does not take place, 
i.e., the physical charge of the electron e coincides with the bare one eo. 
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8.3. The Vertex Operator  

Let us consider the diagram shown in Fig. lc. Its matrix element is 

ie :~(x)F~(x, z; y)t~(z)A~,(y): (8.14) 

where we have introduced a vertex function of the third order 

F~(x, z; y) = ie2%S(x - y) 'y~S(y - z )%D(x  - z) (8.15) 

Taking into account momentum variables as shown in Fig. lc and passing 
to the momentum representation, one can obtain in the Euclidean metric 

[ '~(Pl 'P)=l imie2Idyfdze ipz+iqY~lvS(Y) 'Y~S(z-Y)~lvD~(z)~o 

_ e 2 ( dkE V((pE -- kE)2/2)'Yv( m - -  ] ( E  - -  qE)'Y..( m -- JCE)~/v 

(2~r) 4 J ~ --- ~ - +  (k-E + qE-)E]~m2 ~ /~) 
(8.16) 

Let us carry out integration over the virtual momentum kE in terms of 
the generalized Feynman parametrization: 

blntb2n2 . . .  bf~/ 

F(n'+'"+nJ) I0' Io~ ( ~ ) = r (n , )  "- ' :  f fn j - '~  d x  I " ' "  d x j  ~ 1 - -  i=1 Xi 

× ~ l - I  . . .  x]/-I xibiJ (8.17) 

Again passing to the Minkowski metric, in accordance with the condition 
(P,~Pj~) = - (PiPj) ,  one gets 

e 2 1 ( ,~- i~ v(~)(m2/2)~ 
[ ' , (Pl ,  P) - 8"rr 2i J_,~+i~ (sin ~r~)2F(1 + ~) F~(I~; Pl, P) (8.18) 

where 

F~(~; Pb P) = ~/¢Fl(~; Pb P) + F2¢(~; Pl, P) 

Here 

_ 1 I f I j d c t d ~ d ~ ( 1  _ o t _ ~ _ , y ) o t _ ~ Q  ~ Ft(l~; Pb P) F(I - I~) 
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'fyf  F2(~;pb p) -- 1e(--~) da d~ d~ 8(l - c~ - f3 - "y)c~-~Q ~-I 

1 
x --[m2"y~ - 2mq~ + 4rn(~q~ - otp~) (8.19) 

m 2 

+ (oLp - f ~ q ) ' y / t  + ( a p  - f~q )~ ,~ (e ,p  - 13q)] 

p2 q2 
O = t3 + v - ~,'~ ~ - 13~, ~ - o, t3 ( p  + q)2 

m 2 

We now study the vertex function (8.18) for two cases: first, when q = 
0 and p has an arbitrary value; second, when q is an arbitrary quantity and 
P, Pl are situated on the mass shell. In the first case, assuming q = 0 in the 
formula (8.19) and after some calculations we have 

F'(~; P'P) - F(1- '~) fo du 1 - u ~  u'y~ + 2~u~2mup  2 

(8.20) 

Comparing the obtained formula with the expression (8.5) for the self-energy 
of the electron, it is easy to note that 

3 
V~(~; p, p) - F(~, p) (8.21) 

ap~ 

From this we can obtain a very important conclusion. In the nonlocal 
quantum electrodynamics constructed by using the concept of the extended 
charge density the Ward-Takahashi identity is valid, 

~ , ( p , p )  _ 0 ~(p)  (8.22) 

In the second case, one can put 

~(pl)f'¢(p~, p)u(p) = -~(pOA~(q)u(p) (8.23) 

where ~(Pl) and u(p) are solutions of the Dirac equations: 

(fi - m ) u ( p )  = O, u ( P l ) ( f i l  - m )  = 0 

Substituting the vertex function (8.18) into (8.23) and after some transfor- 
mations, we have 

K(p~)F~(~; p,, p)u(p) = ~(p~)A~(~, q)u(p) (8.24) 
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Here 

i 
A~.(~, q) = 3J~.ft(6, q2) + ~m °'~q~f2(6' q2) 

I 
o '~  = ~ (3'd'/v - 3','V~) 

fJ(~' q21 - F(I - 61 

x 8(1 - a - [3 - y)et-~L~-lgj(a, [3, "y, q2) 

q2 
L = X a  + (1 - e t )  2 -  [3"/~-5 

q2 
gt(a, [3, % q2) = [(1 - ct)2(l - 6) + 2eta] - [[3"/ + ~(ct + [3)(et + ",/)] ~-~ 

gz(a, [3, ~, q2) = 2err(1 _ or) 
(8.25) 

In order to avoid infrared divergences in the vertex function we have 
here introduced the parameter )t = ix~h/m z taking into account the "mass" of 
the photon. 

Finally, we obtain 

i 
A~.(q) = ~ F l ( q  2) + ~m cr~q~F~(q2) (8.26) 

where 

e 2 1 f_-~,-i= dE v(~)(m212)~6)f)(~ ' q2) 
Fj(q2) - 8"rr 2i ,~+i= (sin "rrl~)2F(1 + 

It is easy to verify that the vertex function A~(q) satisfies the gauge- 
invariant condition 

q~-ff(pOA~(q)u(p) = 0 (8.27) 

Let us write the first terms of the decomposition for the functions F~(q 2) 
and F2(q 2) over two small parameters m2F and q2/m2: 

o [  9 ] Fl(q 2) = ~  X -  2 c r -  v'(O) + ~ - 6 c -  3m2/2v(l) + - - - -  

× { ~ ( l c r  - 3 ) + m 2 1 ~ [ v ( 1 ) ( - X + 2 C -  

q2 

2 I r  m 2 

+ v'(l)] } 
(8.28) 
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where cr = ln(m2/ix2ph), c = 0 ,577215. . .  is the Euler constant, a = e2/4"tr, 
and × is defined above in (8.7); and 

~ [  1 2 ] F2(q2) - 2"rr - ~ v(1)m2l 2 (8.29) 

The term in (8.28) independent of  q2 defines the renormalized constant 
Zt and is subject to renormalization. Other terms may be defined from experi- 
mental data which will be discussed below. 

Now, following Efimov (1977, 1985), we consider the role of  renormal- 
ized constants in the nonlocal QED, which we have introduced in the Lagran- 
gian (6.6). The self-energy operator with the renormalized constants Bm and 
Za is written in the form 

~,r(P) = {A(p2)m + B(p2)/~} + gm - (Za - 1)(/~ - m) (8.30) 

Here structure functions of the mass operator (8.4) and (8.5) are denoted 
by A(p 2) and B(p2). Representation (8.30) is valid in any order of perturbation 
theory. Constants gm and Z2 are chosen by the condition 

~ ( p  + q) 
lim ~(p) u(p) = 0 (8.31) 
q=0 m - (p + 0) 

where q is some four-vector such that (pq) 4: O. The vector p lies on the 
mass shell, i.e., p2 = m 2 and/~u(p) = mu(p).  Substituting (8.30) into (8.31) 
and using the properties of  the solutions of  the Dirac equation 

~ ( p ) ~ u ( p )  = P--~(p)u(p) 
m 

Bm = - m ( A ( m  2 + B(m2)) 

Z2 - 1 = B(m 2) + 2m2(A'(m 2) + B'(m2)) 

da(p2) I 
A,(m 2) - dp 2 Ip2=m2 

we obtain 

(8.32) 

Substituting the defined values of  the renormalized constants into (8.30), 
one gets the following expression for the operator of mass: 

~,r(P) = m(A(P  2) - A(m2)) + (B(P 2) - B(m2))/5 

- 2m2(A'(m 2) + B'(m2))(~ - m) (8.33) 

The vertex function with renormalized constant has the form 
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['r~(Pl, P) = 1P¢(pl, p) + (Zl -- I)~/~ (8.34) 

The Ward-Takahashi identity (8.22) should be satisfied for the renormal- 
ized quantities ~r(P) and f'r~(Pl, P), and therefore 

Z2 = Z~ (8.35) 

It should be noted again that all renormalized constants ~m, Z~, and Z2 
are finite and functions of  the elementary length l in the nonlocal theory. 
Then ~m and Z2 are chosen from the normalization condition of the vertex 
operator (8.31) and the quantity Zl is defined from the Ward-Takahashi 
identity. 

The renormalized operator of  the vacuum polarization is written in 
the form 

[ o ] 
I I ~ ( p )  = ( g ~ p 2  _ p~p~) i'ir(p2) + ~ d + Z~ - 1 (8.36) 

Choosing Z3 = 1 - (a/3~)d,  one obtains the normalization II~(0) = 0 for 
f I~ .  This condition entails that the charge e in the interaction Lagrangian is 
the physical observable charge and ~ = e214"rr = 11137. 

9. E X P E R I M E N T A L  R E S T R I C T I O N  ON T H E  VALUE OF T H E  
F U N D A M E N T A L  L E N G T H  

Recently, no effect has been found experimentally which could not be 
dealt with within the local quantum electrodynamics. Tests of  locality are 
usually performed by using very high precision experiments in atomic physics 
and in high-energy lepton-lepton scattering processes. In this section we 
calculate nonlocal corrections to the anomalous magnetic moments of  leptons, 
the Lamb shift, and cross sections of the electromagnetic processes e - e -  ---> 
e e , e+e - --> e+e -, and e+e - --> I.L+~ -,  and obtain a restriction on the value 
of the fundamental length. 

9.1. Corrections to the Anomalous Magnetic Moment (AMM) of 
Leptons 

The nonlocal contribution to the AMM is defined from the vertex func- 
tion A~(q) in (8.26) containing the term with (r~q~, namely the formula 
(8.29) gives 

AIx = ~ 1 - ~ v(l)m2/2 (9.1) 

and its first term corresponds to the Schwinger correction obtained in local 
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QED, where v(l) = 1/4 [see formula (6.2)]. At present, experimental values 
(Particle Data Group, 1998) of the AMM of the electron and muon are 

A,,,e) = 1.001159652193 + 0.000000000010 t'exp 

A,,~) = 1.001165923 + 0.000000008 (9.2) ¢-~exp 

and are fully described by local QED. Comparing the correction (9.1) with 
the experimental errors in (9.2), one can obtain 

l --< 8.75 x 10 -t5 cm for Al~ex)p 

l < 1.2 X 10 -t5 cm for A,,(~) -- ~ t.~exp 

9.2. The Lamb Shift 

(9.3) 

According to the standard calculation (Brodsky and Drell, 1970), the 
difference between energy levels 2S~/2 and 2P1/2 for the hydrogen atom due 
to the change of functions Ft and Fz in (8.26) is given by 

( ' } A E I ( 2 S t / z  - 2P1/2) = o~2Ry m2F'l(0) - ~/72(0) (9.4) 

A E t ( 2 S I / 2  - 2P~/2) = ~ Ry-m2/2 v(l) In m 2 1 2  + 2 c  - 

or with the function (6.2) 

A E t ( 2 S I / 2  - 2Pi/2) - °~3 m2/2I  l 5 1 
6.rr Ry - - ~  - In ~-~-~ + ~ + 2 In 2 - 3c 

c = 0.577216. 
The experimental value of the Lamb shift is 

(AE)ex p = (1057.912 --- 0.01 I) MHz/sec 

and is well explained by local QED (Brodsky and Drell, 1970). 
Therefore 

I A E t ( 2 S I / z  - 2P1/2) 1 <- 0.011 MHz/sec 

+ v '(1)]  

(9.5) 

(9.6) 

(9.7) 

where Ry = mot2]2 is the Rydberg constant. 
Making use of the formulas (8.28) and (8.29), one obtains the following 

expression for the correction due to nonlocality of  the electron charge: 
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e '  e ~" 

e -  e -  

Fig. 2. Processes e - e -  --~ e - e - ,  e+e - ~ e+e - ,  and e÷e - ~ ~x+tx - in the low order of  
perturbation theory. 

and substituting formula (9.6) into this equality, we get 

l _<3  × 10-13 cm (9.8) 

9.3. Electron Scatterings at High Energies 

Stricter restrictions on the value of the fundamental length may be 
obtained from experiments on electron scattering at high energies. Electro- 
magnetic processes of the type e e --+ e -e - ,  e+e - ---> e+e -, and e+e - ==> 
p:I.L- are described by lower orders of perturbation theory (Fig. 2) even at 
the high energies attainable to date. 

The ratio of  cross sections calculated by local and nonlocal theories is 

~rno, Io~al _ [ V ( _ s e 2 ) ] z  ~ 1 + 2 v ( l ) s l  z (9.9) 
Orlocal 

where s = (P l  + P2) z = (2E) z = W Z ,  and W = 2E is the total energy in the 
center-of-mass system. Estimation based on the formula (9.9) and experimen- 
tal data (Bartel et  al . ,  1980; Berger e t  al . ,  1980) is very simple and gives the 
restriction of the order 

l --< 10 -16 cm (9.10) 

Finally, it should be noted that generally speaking restrictions (9.3), 
(9.8), and (9.10) imply that leptons as elementary constituents carrying 
extended electric charge are pointlike particles with radii smaller than 
10 -t6 cm. 

APPENDIX A 

1. The Mellin representation (6.2) for an entire function is useful for 
calculating improper integrals. For example, 
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Ii = dx sin ax 
x 

1 ( - ~ - i ~  1 a 1+2~ ( ~  
= lim d{ - -  dx x 2~ 

~-.0 ~ J-~+i~ sin "rr~ F(2 + 2~) ),, 

= - l i m  1 I '~-i~ 1 a |+2{ e I+2~ d ~ - -  , a > 0  (c~ > 0) 
~--~o ~ J-,~+i~ sin rr{ F(2 + 2{) 1 + 2{ 

(A.l) 

Displacing the contour integration to the right and calculating the resi- 
dues, one can easily see that the residue at the point { = - 1 / 2  gives 

11 = ~r/2 (A.2) 

in the limit e ~ O. 
Similarly, we have 

/2 = dx sin(ax 2) 

- l i m  1 I '~-i® 1 1 al+2~ 4~+3 = d~ - (A.3) 
~--m ~ J-~+i~ sin 7r/~ F(2 + 2 0  3 + 4~ 2v/2a 

and 

13 = dx sin ax 

1 f-,~-i® 1 1 ai+2~E 2~+2 1 
= - l i m  1 d~ - -  - (A.4) 

~-.o ~ J-,~+i= sin "rr{ F(2 + 2 0  2 + 2{ a 

2. The modified Coulomb potential 

q~l(r) 4~r r 
(A.5) 

satisfies the Poisson equation 

(r2) - 1  - ~  
Aqh(r) = ~-13 exp (A.6) 

identically. Here we have used another representation for the probability 
integral 
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+(r/l) = 1 - (2/,f~) exp ( - rZ / l  2) Io (A.7) 

fo o Io = dt (t 2 + r2)-u2(tll) exp(-t2/l 2) (A.8) 

and the following integral forms: 

fo ~ ( t 2 )  11 2 t 12)-3n - ~  l r /2 Io (A.9) il = dt -l (r2 + exp = 

to ~ ( t 2 )  - 1 1  2 1 4  
t /2)-5e - ~  31 3/3 r ~4 i2 = dt -1 @2 + exp r3 + Io (A. 10) 

which arise from the Laplacian A~pt(r ). 
3. The equality 

W = ~ d3r pt(r)q~l(r) = ~ d3rE/Z(r) (A.ll) 

G7 

for the self-energy of the extended electric charge gives following useful 
formulas: 

fo ° dy dp2(Y) - "/2 [,,/~ In 1 + " 4 ~ y 2  ~ ,,/~----~1 1] (A.12) 

or 

~ [2(nl + n2) -  1]!! 
.,=o.2=o (2n, + D.vVT~n72 + 1)!! 2-("'+"2) 

1 + ~ I (A.13) = v~ln  V ~ _  1 

The latter means that an explicit sum of the symmetric double series 
(A. 13) exists. 
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